Abstract

A new approach for flow simulation in very complex discrete fracture networks based on PDE-constrained optimization has been recently proposed in Berrone et al. (SIAM J Sci Comput 35(2):B487–B510, 2013b; J Comput Phys 256:838–853, 2014) with the aim of improving robustness with respect to geometrical complexities. This is an essential issue, in particular for applications requiring simulations on geometries automatically generated like the ones used for uncertainty quantification analyses and hydro-mechanical simulations. In this paper, implementation of this approach in order to exploit Nvidia Compute Unified Device Architecture is discussed with the main focus to speed up the linear algebra operations required by the approach, being this task the most computational demanding part of the approach. Furthermore, two different approaches for linear algebra operations and two storage formats for sparse matrices are compared in terms of computational efficiency and memory constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.