Abstract

Deep convolutional neural networks (CNNs) currently demonstrate the state-of-the-art performance in several domains. However, a large amount of memory and computing resources are required in the commonly used CNN models, posing challenges in training as well as deploying, especially on those devices with limited computational resources. Inspired by the recent advancement of random tensor decomposition, we introduce a Hierarchical Framework for Fast and Robust Compression (HFFRC), which significantly reduces the number of parameters needed to represent a convolution layer via a fast low-rank Tucker decomposition algorithm, while preserving its expressive power. In the merit of randomized algorithm, the proposed compression framework is robust to noises in parameters. In addition, it is a general framework that any tensor decomposition method can be easily adopted. The efficiency and effectiveness of the proposed approach have been demonstrated via comprehensive experiments conducted on the benchmarks CIFAR-10 and CIFAR-100 image classification datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call