Abstract

Background: The increasing popularity of wrist-worn accelerometers introduces novel challenges to the research on physical activity and sedentary behavior. Estimation of body posture is one such challenge. Methods: The authors proposed an approach called SedUp to differentiate between sedentary (sitting/lying) and standing postures. SedUp is based on the logistic regression classifier, using the wrist elevation and the motion variability extracted from raw accelerometry data collected on the axis parallel to the forearm. The authors developed and tested our method on data from N = 45 community-dwelling older adults. All subjects wore ActiGraph GT3X+ accelerometers on the left and right wrist, and activPAL was placed on the thigh in the free-living environment for 7 days. ActivPAL provided ground truth about body posture. The authors reported SedUp’s classification accuracy for each wrist separately. Results: Using the data from the left wrist, SedUp estimated the standing posture with median true positive rate = 0.83 and median true negative rate = 0.91. Using the data from the right wrist, SedUp estimated the standing posture with median true positive rate = 0.86 and median true negative rate = 0.93. Conclusions: SedUp provides accurate classification of body posture using wrist-worn accelerometers. The separate validation for each wrist allows for the application of SedUp in a wide spectrum of free-living studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.