Abstract

Matching 3D point clouds, a critical operation in map building and localization, is difficult with Velodyne-type sensors due to the sparse and non-uniform point clouds that they produce. Standard methods from dense 3D point clouds are generally not effective. In this paper, we describe a feature-based approach using Principal Components Analysis (PCA) of neighborhoods of points, which results in mathematically principled line and plane features. The key contribution in this work is to show how this type of feature extraction can be done efficiently and robustly even on non-uniformly sampled point clouds. The resulting detector runs in real-time and can be easily tuned to have a low false positive rate, simplifying data association. We evaluate the performance of our algorithm on an autonomous car at the MCity Test Facility using a Velodyne HDL-32E, and we compare our results against the state-of-the-art NARF keypoint detector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.