Abstract

This work reports on the hydrogen sensing abilities of palladium (Pd)-capped magnesium (Mg) bimetallic ultra-thin films, which were prepared by RF magnetron sputtering. The metal loading and the composition of the quantum-sized Pd-capped Mg nanoparticles (NPs) were carefully controlled by varying the deposition conditions of the RF magnetron sputtering system. The as-fabricated structure shows hydrogenation at room temperature and dehydrogenation at increased temperatures. The change in electrical resistance during the hydrogenation/dehydrogenation process is found to be reversible. Along with this, the as-fabricated sensor also showed remarkable advantages, such as a large detection range (1–40,000ppm) and fast response time. For a 10,000ppm (1vol.%) H2 concentration at room temperature, a response time of 6s was observed. The fabricated sensor also exhibited good selectivity and a negligible humidity effect over the entire detection range. These Pd-capped Mg bimetallic ultra-thin films deposited on alumina (Al2O3) substrates can be used as a fast response, affordable, and low-temperature hydrogen sensing material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.