Abstract

A suitable environment is essential for successful long-term cell culturing in vitro. Too high or too low temperature will affect the growth of cells, so we need to maintain the constant temperature of the cell culture environment. Usually, cells are cultured in a cell incubator, and the constant temperature is provided by the cell incubator. Recently, we have developed a multi-channel axon stretch growth bioreactor for rapid acquisition of autologous nerve tissue. Since the motor and controller are placed in the incubator for a long time, the service life of the equipment will be shortened or even damaged due to high humidity and weak acid environment. In order to enable the axon stretch growth bioreactor to culture cells independently, we designed a constant temperature control system for the device. Firstly, the simulation results show that the fuzzy PID control reduces the overshoot and improves the traditional PID control with large overshoot and low control precision. Then, the two control algorithms were applied to the multi-channel axon stretch growth bioreactor by STM32F4 microcontroller. The experimental data show that the fuzzy PID control algorithm has good control effect and can meet the requirement of constant temperature of cell growth. Finally, nerve cells derived from human pluripotent stem cells were successfully cultured in a cell culture amplification chamber under a constant temperature environment provided by a fuzzy PID controller, and well-developed axons could be seen. In the future, we may transplant stretch growth axons into living organisms to repair nerve damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call