Abstract

This paper introduces an optimal algorithm for solving the discrete grid-based coverage path planning (CPP) problem. This problem consists in finding a path that covers a given region completely. First, we propose a CPP-solving baseline algorithm based on the iterative deepening depth-first search (ID-DFS) approach. Then, we introduce two branch-and-bound strategies (Loop detection and an Admissible heuristic function) to improve the results of our baseline algorithm. We evaluate the performance of our planner using six types of benchmark grids considered in this study: Coast-like, Random links, Random walk, Simple-shapes, Labyrinth and Wide-Labyrinth grids. We are first to consider these types of grids in the context of CPP. All of them find their practical applications in real-world CPP problems from a variety of fields. The obtained results suggest that the proposed branch-and-bound algorithm solves the problem optimally (i.e., the exact solution is found in each case) orders of magnitude faster than an exhaustive search CPP planner. To the best of our knowledge, no general CPP-solving exact algorithms, apart from an exhaustive search planner, have been proposed in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.