Abstract
Coal type identification is the basic work of coal quality inspection, which is of great significance to the normal operation of power generation, metallurgy, and other industries. The traditional coal-type identification method is complicated and requires comprehensive determination of various chemical parameters to obtain more accurate analysis results. Hyperspectral detection and analysis technology has the advantages of being simple, fast, nondestructive, and safe, and is widely used in a variety of fields. In this study, typical spectral feature parameters of coal samples were extracted based on hyperspectral data, and the parameters' sensitivity to coal types was explored using one-way ANOVA. The results showed that the coal spectral feature parameters of DI1-2μm and AD2.2μm significantly differed with coal species, indicating that the two parameters were class-sensitive features. When DI1-2μm and AD2.2μm were used to construct the Fisher discriminant model, the coal types could be discriminated with high accuracy. At the same time, the correlation between the extracted spectral feature parameters and the physicochemical parameters of bituminous coal and anthracite was analyzed. The results showed that there was a certain basis for using the extracted spectral feature parameters as the sensitive spectral characteristics of the model, and the application potential of the spectral characteristics of coal in the nondestructive prediction analysis of coal parameters was further discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.