Abstract
Least-squares reverse time migration (LSRTM) is linearized inversion based on Born approximation, which commonly seeks to high-quality migration result by least-squares sense. Contrary to time domain LSRTM which performs the wavefield simulation as much as several times of the number of shots, frequency-domain LSRTM (F-LSRTM) has advantage to efficiently deal with multiple shot records. Furthermore, if Green’s function can be saved on memory storage, the full wavefield simulation is implemented only once at the first iteration during entire LSRTM iterations. However, huge memory storage may be required to save the Green’s function for large dataset and model size. To alleviate this computational issue, we propose an efficient F-LSRTM scheme using singular value decomposition (SVD). In our scheme, Green’s function can be saved efficiently as two unitary matrices and one singular value vector with a few number of dominant singular values. Because the number of dominant singular values, called as the optimal rank, is much smaller than the minimum value in each dimension size of Green’s function, the proposed method can make it possible to save the Green’s function into the computing memory with keeping the accuracy. After demonstrating the feasibility of reducing the rank of Green’s function, we examine our proposed F-LSRTM scheme and comparative F-LSRTM schemes (F-LSRTM using adjoint-state method and saved full Green’s function, respectively) using the simple layered and modified marmousi-2 model. Numerical tests indicate that our proposed F-LSRTM scheme can generate migration results as accurate as comparative F-LSRTM schemes with less memory usages and computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.