Abstract

A novel ternary composite with the flower-like structure was synthesized by integrating of γ-FeOOH and g-C3N4/kaolinite containing N vacancies (FNGK). The FNGK-10 composite exhibited the superiority of bisphenol A (BPA) degradation in the presence of peroxymonosulfate (PMS) under the visible-light irradiation with the outstanding reusability and universal applicability, in which the degradation rate constant of FNGK-10/PMS/Vis system was about 3.25 and 8.42 times higher than that of FNGK-10/PMS and FNGK-10/Vis system, respectively. Moreover, the introduction of kaolinite leads to the accelerated consumption of PMS. The FTIR, EPR and XPS spectra proved that the formation of Fe-N and cyano (C≡N) bonds induced the enhancement of the efficiency of electron transfer. The photo-generated carriers could be trapped by N vacancies and γ-FeOOH, which was favorable for the separation potency of photoexcited charge carriers and reduction efficiency of Fe(III) to Fe(II). This paper gave a new perspective on the coupling application of PMS activation and photocatalytic technology to efficiently degrade organic contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call