Abstract

The imaging quality of the conventional single-pixel-imaging (SPI) technique seriously degrades at a low sampling rate. To tackle this problem, we propose an efficient sampling method and a high-quality real-time image reconstruction strategy: first, different from the conventional simple circular path sampling strategy or variable density random sampling technique, the proposed method samples the Fourier spectrum using the spectrum distribution of the image, that is, sampling the significant spectrum coefficients first, which will help to improve the image quality at a relevantly low sampling rate; second, to handle the long image reconstruction time caused by the iterative algorithm, the sparsity of the image and the alternating direction optimization strategy are combined to ameliorate the reconstruction process in the image gradient space. Compared with the state-of-the-art techniques, the proposed method significantly improves the imaging quality and achieves real-time reconstruction on the time scale of milliseconds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call