Abstract

Determining the rigid transformation relating 2D images to known 3D geometry is a classical problem in photogrammetry and computer vision. Heretofore, the best methods for solving the problem have relied on iterative optimization methods which cannot be proven to converge and/or which do not effectively account for the orthonormal structure of rotation matrices. We show that the pose estimation problem can be formulated as that of minimizing an error metric based on collinearity in object (as opposed to image) space. Using object space collinearity error, we derive an iterative algorithm which directly computes orthogonal rotation matrices and which is globally convergent. Experimentally, we show that the method is computationally efficient, that it is no less accurate than the best currently employed optimization methods, and that it outperforms all tested methods in robustness to outliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.