Abstract

A new coupled cluster singles and doubles with triples correction, CCSD(T), algorithm is presented. The new algorithm is implemented in object oriented C++, has a low memory footprint, fast execution time, low I/O overhead, and a flexible storage backend with the ability to use either distributed memory or a file system for storage. The algorithm is demonstrated to work well on single workstations, a small cluster, and a high-end Cray computer. With the new implementation, a CCSD(T) calculation with several hundred basis functions and a few dozen occupied orbitals can run in under a day on a single workstation. The algorithm has also been implemented for graphical processing unit (GPU) architecture, giving a modest improvement. Benchmarks are provided for both CPU and GPU hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.