Abstract
In this study, laser-assisted chemical bath synthesis (LACBS) was used to prepare pure and Ag-doped ZnO submicron structures using a simplified hydrothermal approach that did not require a catalyst. The photocatalytic degradation of Methylene Blue was investigated under blue laser irradiation (λ = 444.5 nm and I = 8000 lx). The doping concentration varied (2%, 4%, 6%, 8%, tando 10%) and was prepared by LACBS using a continuous blue laser (P = 7 W, λ = 444.5 nm) for the first time. XRD, FE-SEM, EDX, and UV-Vis investigated the characteristics of the samples produced by the LACBS. ZnO: Ag(10%) submicron flowers are essential in rapid photodegradation under blue laser irradiation. The high surface area and catalytic activity of the prepared Ag-decorated ZnO are attributed to this improved photocatalytic activity. Using UV-visible spectroscopy, the photocatalytic efficiency was determined from the absorption spectra. The separation of photo-generated electron-hole pairs was facilitated, and the absorption edge of the hybrid submicron structures shifted into the visible spectrum region due to a combination of the Ag plasmonic effect and surface imperfections in ZnO. Effective visible light absorption was achieved via band-edge tuning, which increased the ZnO:Ag submicron structures’ ability to degrade dyes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.