Abstract

The performance of a series of visible-light driven photoinitiating systems (Vis-PIs) for radical polymerization was evaluated. The Vis-PIs formulations consisted of aqueous solutions containing xanthene dyes as sensitizers, while polyamido-amine (PAMAM) dendrimers were tested as alternative co-initiators of lower toxicity than the traditional amines. Acrylamide and HEMA were used as probe monomers and the respective polymers were characterized by FTIR, DSC and viscosimmetry. In order to elucidate the mechanism of photopolymerization, the triplet excited-states and semirreduced forms of the dyes were characterized by transient spectroscopy. Photophysical parameters as intersystem crossing and radical quantum yields were also determined for each dye/dendrimer couple. All Vis-PIs operated successfully under solar irradiation, achieving high monomer conversions after short exposure times. Interestingly, formulations with partially halogenated dyes showed the highest efficiency, which correlates inversely with the affinity and the electron transfer capability between the reactants. This study demonstrates the usefulness of dye/dendrimer combinations to operate as efficient aqueous Vis-PIs under an inexpensive, unlimited and natural energy source such as sunlight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.