Abstract

Spiking neural networks (SNNs) are considered as one of the most promising artificial neural networks due to their energy-efficient computing capability. Recently, conversion of a trained deep neural network to an SNN has improved the accuracy of deep SNNs. However, most of the previous studies have not achieved satisfactory results in terms of inference speed and energy efficiency. In this paper, we propose a fast and energy-efficient information transmission method with burst spikes and hybrid neural coding scheme in deep SNNs. Our experimental results showed the proposed methods can improve inference energy efficiency and shorten the latency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.