Abstract

ABSTRACT Current large-scale astrophysical experiments produce unprecedented amounts of rich and diverse data. This creates a growing need for fast and flexible automated data inspection methods. Deep learning algorithms can capture and pick up subtle variations in rich data sets and are fast to apply once trained. Here, we study the applicability of an unsupervised and probabilistic deep learning framework, the probabilistic auto-encoder, to the detection of peculiar objects in galaxy spectra from the SDSS survey. Different to supervised algorithms, this algorithm is not trained to detect a specific feature or type of anomaly, instead it learns the complex and diverse distribution of galaxy spectra from training data and identifies outliers with respect to the learned distribution. We find that the algorithm assigns consistently lower probabilities (higher anomaly score) to spectra that exhibit unusual features. For example, the majority of outliers among quiescent galaxies are E+A galaxies, whose spectra combine features from old and young stellar population. Other identified outliers include LINERs, supernovae, and overlapping objects. Conditional modelling further allows us to incorporate additional information. Namely, we evaluate the probability of an object being anomalous given a certain spectral class, but other information such as metrics of data quality or estimated redshift could be incorporated as well. We make our code publicly available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.