Abstract

Cadmium-based quantum dots (QDs) were easily, quickly and efficiently transferred from an organic medium to water without modification of their surface chemistry by the simple emulsion/solvent evaporation technique using micelles of amphiphilic diblock copolymers based on poly(ethylene oxide) and poly(2-methacryloyloxyethyl acrylate) (PEO-b-PMEA) as hosts. The resulting hybrid micelles were stabilized very rapidly by photo-cross-linking the hydrophobic core around the QDs. The encapsulation and photo-cross-linking process were shown to barely affect the photoluminescence properties. Grafting a short octyl chain at the end of the hydrophobic block enhanced both the colloidal stability of the QDs dispersed in water and prevented the quenching of their fluorescence by copper ions. Grafting a longer hexadecyl chain at the end of the PMEA block decreased the efficiency of the corona cross-linking and led to poorer stabilization and protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.