Abstract

Identifying, from time series analysis, reliable indicators of causal relationships is essential for many disciplines. Main challenges are distinguishing correlation from causality and discriminating between direct and indirect interactions. Over the years many methods for data-driven causal inference have been proposed; however, their success largely depends on the characteristics of the system under investigation. Often, their data requirements, computational cost or number of parameters limit their applicability. Here we propose a computationally efficient measure for causality testing, which we refer to as pseudo transfer entropy (pTE), that we derive from the standard definition of transfer entropy (TE) by using a Gaussian approximation. We demonstrate the power of the pTE measure on simulated and on real-world data. In all cases we find that pTE returns results that are very similar to those returned by Granger causality (GC). Importantly, for short time series, pTE combined with time-shifted (T-S) surrogates for significance testing strongly reduces the computational cost with respect to the widely used iterative amplitude adjusted Fourier transform (IAAFT) surrogate testing. For example, for time series of 100 data points, pTE and T-S reduce the computational time by 82% with respect to GC and IAAFT. We also show that pTE is robust against observational noise. Therefore, we argue that the causal inference approach proposed here will be extremely valuable when causality networks need to be inferred from the analysis of a large number of short time series.

Highlights

  • Identifying, from time series analysis, reliable indicators of causal relationships is essential for many disciplines

  • Using the selected data generating processes (DGPs) we demonstrate that pseudo transfer entropy (pTE) obtains similar power and size as Granger causality (GC) while, for short time series, it allows a large reduction of the computational cost

  • We have proposed a new measure, pseudo transfer entropy, to infer causality in systems composed by two interacting processes

Read more

Summary

Introduction

Identifying, from time series analysis, reliable indicators of causal relationships is essential for many disciplines. Over the years many methods for data-driven causal inference have been proposed; their success largely depends on the characteristics of the system under investigation Often, their data requirements, computational cost or number of parameters limit their applicability. The success of the GC and TE approaches strongly depends on the characteristics of the system under study (its dimensionality, the strength of the coupling, the length and the temporal resolution of the data, the level of noise contamination, etc.). Both approaches can fail in distinguishing genuine causal interactions from correlations that arise due to similar governing equations, or correlations that are induced by the presence of common external forcings.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.