Abstract

BackgroundThere is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials. In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications.ResultsTo reduce costs of eventual scaling-up, the new lipases were obtained directly from crude cell extracts or from growth culture supernatants, and immobilized by simple adsorption on Accurel EP100, Accurel MP1000 and Celite®545. The enzymes evaluated were LipA and LipC from Pseudomonas sp. 42A2, a thermostable mutant of LipC, and LipI.3 from Pseudomonas CR611, which were produced in either homologous or heterologous hosts. Best immobilization results were obtained on Accurel EP100 for LipA and on Accurel MP1000 for LipC and its thermostable variant. Lip I.3, requiring a refolding step, was poorly immobilized on all supports tested (best results for Accurel MP1000). To test the behavior of immobilized lipases, they were assayed in triolein transesterification, where the best results were observed for lipases immobilized on Accurel MP1000.ConclusionsThe suggested protocol does not require protein purification and uses crude enzymes immobilized by a fast adsorption technique on low-cost supports, which makes the method suitable for an eventual scaling up aimed at biotechnological applications. Therefore, a fast, simple and economic method for lipase preparation and immobilization has been set up. The low price of the supports tested and the simplicity of the procedure, skipping the tedious and expensive purification steps, will contribute to cost reduction in biotechnological lipase-catalyzed processes.

Highlights

  • There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials

  • In order to obtain stable, efficient and economic enzyme preparations suitable for potential biotechnological applications, in this work three hydrophobic and porous materials were tested as supports for lipase immobilization: two polypropylene matrices (Accurel EP100 and MP1000) and a diatomaceous silica (Celite®545)

  • Genes coding for LipA, LipC and LipCmut were ligated to pBBR1MCS vector together with their cognate foldase gene lipH [21,22]

Read more

Summary

Introduction

There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications. Adsorption, used in this work, is a convenient system for lipase immobilization that could be successfully applied to large volume industrial processes, as in biodiesel production, because of its simplicity and low cost [10,11]. In order to obtain stable, efficient and economic enzyme preparations suitable for potential biotechnological applications, in this work three hydrophobic and porous materials were tested as supports for lipase immobilization: two polypropylene matrices (Accurel EP100 and MP1000) and a diatomaceous silica (Celite®545)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call