Abstract
Film-quality characters typically display highly complex and expressive facial deformation. The underlying rigs used to animate the deformations of a character's face are often computationally expensive, requiring high-end hardware to deform the mesh at interactive rates. In this paper, we present a method using convolutional neural networks for approximating the mesh deformations of characters' faces. For the models we tested, our approximation runs up to 17 times faster than the original facial rig while still maintaining a high level of fidelity to the original rig. We also propose an extension to the approximation for handling high-frequency deformations such as fine skin wrinkles. While the implementation of the original animation rig depends on an extensive set of proprietary libraries making it difficult to install outside of an in-house development environment, our fast approximation relies on the widely available and easily deployed TensorFlow libraries. In addition to allowing high frame rate evaluation on modest hardware and in a wide range of computing environments, the large speed increase also enables interactive inverse kinematics on the animation rig. We demonstrate our approach and its applicability through interactive character posing and real-time facial performance capture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.