Abstract
We report a simple and efficient all-optical polarization scrambler based on the nonlinear interaction in an optical fiber between a signal beam and its backward replica which is generated and amplified by a reflective loop. When the amplification factor exceeds a certain threshold, the system exhibits a chaotic regime in which the evolution of the output polarization state of the signal becomes temporally chaotic and scrambled all over the surface of the Poincare sphere. We numerically derive some design rules for the scrambling performances of our device which are well confirmed by the experimental results. The polarization scrambler has been successfully tested on a 10-Gb/s On/Off Keying Telecom signal, reaching scrambling speeds up to 500-krad/s, as well as in a wavelength division multiplexing configuration. A different configuration based on a following cascade of polarization scramblers is also discussed numerically, which leads to an increase of the scrambling performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.