Abstract

This paper aims at a semi-dense visual odometry system that is accurate, robust, and able to run realtime on mobile devices, such as smartphones, AR glasses and small drones. The key contributions of our system include: 1) the modified pyramidal Lucas-Kanade algorithm which incorporates spatial and depth constraints for fast and accurate camera pose estimation; 2) adaptive image resizing based on inertial sensors for greatly accelerating tracking speed with little accuracy degradation; and 3) an ultrafast binary feature description based directly on intensities of a resized and smoothed image patch around each pixel that is sufficiently effective for relocalization. A quantitative evaluation on public datasets demonstrates that our system achieves better tracking accuracy and up to about 2X faster tracking speed comparing to the state-of-the-art monocular SLAM system: LSD-SLAM. For the relocalization task, our system is 2.0X ~ 4.6X faster than DBoW2 and achieves a similar accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.