Abstract
Recently, convolutional neural network (CNN) based single image super-resolution (SISR) solutions have demonstrated significant progress on restoring accurate high-resolution image based on its corresponding low-resolution version. However, most state-of-the-art SISR approaches attempt to achieve higher accuracy by pursuing deeper or more complicated models, which adversely increases computational cost. To achieve a good balance between restoration accuracy and computational speed, we make simple but effective modifications to the structure of residual blocks and skip-connections between stacked layers, and then propose a novel energy-aware training loss to adaptively adjust the restoration of high-frequency and low-frequency image regions. Extensive qualitative and quantitative evaluation results on benchmark datasets verify the effectiveness of the proposed techniques that they significantly improve SISR accuracy while causing no/ignorable extra computational loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.