Abstract

ABSTRACT We embed linear and non-linear parametrizations of beyond standard cosmological physics in the halo model reaction framework, providing a model-independent prescription for the non-linear matter power spectrum. As an application, we focus on Horndeski theories, using the Effective Field Theory of Dark Energy (EFTofDE) to parametrize linear and quasi-non-linear perturbations. In the non-linear regime, we investigate both a non-linear parametrized post-Friedmann (nPPF) approach as well as a physically motivated and approximate phenomenological model based on the error function (Erf). We compare the parametrized approaches’ predictions of the non-linear matter power spectrum to the exact solutions, as well as state-of-the-art emulators, in an evolving dark energy scenario and two well-studied modified gravity models, finding sub-per cent agreement in the reaction using the Erf model at z ≤ 1 and k ≤ 5 h Mpc−1. This suggests only an additional three free constants, above the background and linear theory parameters, are sufficient to model non-linear, non-standard cosmology in the matter power spectrum at scales down to k ≤ 3h Mpc−1 within $2{{\ \rm per\ cent}}$ accuracy. We implement the parametrizations into ver.2.0 of the ReACT code: ACTio et ReACTio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call