Abstract

This article presents a new approach to large scale patent classification. The need to classify documents often takes place in professional information retrieval systems. In this paper we describe our approach, based on linguistically-supported k-nearest neighbors. We experimentally evaluate it on the Russian and English datasets and compare modern classification technique fastText. We show that KNN is a viable alternative to traditional text classifiers, achieving comparable accuracy while using less additional hardware resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.