Abstract

It is desirable to maintain both high accuracy and runtime efficiency in lane detection. State-of-the-art methods mainly address the efficiency problem by direct compression of high-dimensional features. These methods usually suffer from information loss and cannot achieve satisfactory accuracy performance. To ensure the diversity of features and subsequently maintain information as much as possible, we introduce multi-frequency analysis into lane detection. Specifically, we propose a multi-spectral feature compressor (MSFC) based on two-dimensional (2D) discrete cosine transform (DCT) to compress features while preserving diversity information. We group features and associate each group with an individual frequency component, which incurs only 1/7 overhead of one-dimensional convolution operation but preserves more information. Moreover, to further enhance the discriminability of features, we design a multi-spectral lane feature aggregator (MSFA) based on one-dimensional (1D) DCT to aggregate features from each lane according to their corresponding frequency components. The proposed method outperforms the state-of-the-art methods (including LaneATT and UFLD) on TuSimple, CULane, and LLAMAS benchmarks. For example, our method achieves 76.32% F1 at 237 FPS and 76.98% F1 at 164 FPS on CULane, which is 1.23% and 0.30% higher than LaneATT. Our code and models are available at https://github.com/harrylin-hyl/MSLD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call