Abstract

Infectious disease forecasting is an emerging field and has the potential to improve public health through anticipatory resource allocation, situational awareness, and mitigation planning. By way of exploring and operationalizing disease forecasting, the U.S. Centers for Disease Control and Prevention (CDC) has hosted FluSight since the 2013/14 flu season, an annual flu forecasting challenge. Since FluSight’s onset, forecasters have developed and improved forecasting models in an effort to provide more timely, reliable, and accurate information about the likely progression of the outbreak. While improving the predictive performance of these forecasting models is often the primary objective, it is also important for a forecasting model to run quickly, facilitating further model development and improvement while providing flexibility when deployed in a real-time setting. In this vein I introduce Inferno, a fast and accurate flu forecasting model inspired by Dante, the top performing model in the 2018/19 FluSight challenge. When pseudoprospectively compared to all models that participated in FluSight 2018/19, Inferno would have placed 2nd in the national and regional challenge as well as the state challenge, behind only Dante. Inferno, however, runs in minutes and is trivially parallelizable, while Dante takes hours to run, representing a significant operational improvement with minimal impact to performance. Forecasting challenges like FluSight should continue to monitor and evaluate how they can be modified and expanded to incentivize the development of forecasting models that benefit public health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.