Abstract

Thirteen bacterial strains of Xenorhabdus and 14 strains of Photorhabdus originating from a wide range of geographical and nematode host sources were typed by analyzing 16S rRNA gene (rDNA) restriction patterns obtained after digestion of PCR-amplified 16S rDNAs. Eight tetrameric restriction endonucleases were examined. A total of 17 genotypes were identified, forming two heterogeneous main clusters after analysis by the unweighted pair-group method using arithmetic averages: group I included all Xenorhabdus species and strains, symbionts of Steinernema, whereas group II encompassed the Photorhabdus strains, symbionts of Heterorhabditis. To identify the four valid species of Xenorhabdus and unclassified strains and all the genotypes of Photorhabdus luminescens, three restriction enzymes are required: CfoI, AluI, and HaeIII. Our results, in substantial agreement with DNA-DNA pairing and 16S rDNA sequence data, indicate that amplified 16S rDNA restriction analysis is a simple and accurate tool for identifying entomopathogenic nematode bacterial symbionts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.