Abstract
BackgroundThe site frequency spectrum summarizes the distribution of allele frequencies throughout the genome, and it is widely used as a summary statistic to infer demographic parameters and to detect signals of natural selection. The use of high-throughput low-coverage DNA sequencing data can lead to biased estimates of the site frequency spectrum due to high levels of uncertainty in genotyping.ResultsHere we design and implement a method to efficiently and accurately estimate the multidimensional joint site frequency spectrum for large numbers of haploid or diploid individuals across an arbitrary number of populations, using low-coverage sequencing data. The method maximizes a likelihood function that represents the probability of the sequencing data observed given a multidimensional site frequency spectrum using genotype likelihoods. Notably, it uses an advanced binning heuristic paired with an accelerated expectation-maximization algorithm for a fast and memory-efficient computation, and can generate both unfolded and folded spectra and bootstrapped replicates for haploid and diploid genomes. On the basis of extensive simulations, we show that the new method requires remarkably less storage and is faster than previous implementations whilst retaining the same accuracy. When applied to low-coverage sequencing data from the fungal pathogen Neonectria neomacrospora, results recapitulate the patterns of population differentiation generated using the original high-coverage data.ConclusionThe new implementation allows for accurate estimation of population genetic parameters from arbitrarily large, low-coverage datasets, thus facilitating cost-effective sequencing experiments in model and non-model organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.