Abstract
Abstract This research develops a data-driven methodology for structural instability problems with highly nonlinear, difficult, noisy, and small data. A fast analysis and prediction (FAP) approach for instability problems of thin shells is first proposed. This approach contains two phases: the fast numerical analysis and the pure prediction utilizing artificial neural networks (ANNs) incorporated with the Bayesian regularization (B-R) algorithm as follows: (1) in Phase 1 (the fast numerical analysis), post-buckling analysis is conducted utilizing a minor amount of load steps. The load–displacement relation achieved from Phase 1 is not exact because of the small number of load steps utilized; (2) in Phase 2 (the prediction), the loads and deflections achieved from Phase 1 were employed as the data for training ANNs. The trained networks, including the load and displacement networks, were employed to fast predict loads and deflections at any step of the post-buckling analysis. After utilizing Phase 2, a smooth, complete and exact load–displacement curve was achieved. In Phase 1, the available formulation for post-buckling analysis of thin shells in the literature was utilized. Five popular types of instabilities chosen to confirm the effectiveness and exactness of the FAP were snap-through, snap-back, softening–hardening, kink instabilities, and delamination buckling and post-buckling of composites. The high exactness and effectiveness of the FAP were confirmed in the numerical verification section. The present approach saves a huge computation compared to the other ones. It was found that ANNs incorporated with the B-R algorithm have notable advantages compared to numerous neural networks. The proposed approach is applicable to simulations or experiments where data are “expensive”, highly nonlinear, difficult, and limited. Utilizing the proposed approach for these fields can dramatically save time and money.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.