Abstract

This paper presents an analytical approach to fast analyzing and designing long-period fiber grating (LPFG) devices with cosine-class apodizations by using the Fourier mode coupling (FMC) theory. The LPFG devices include LPFGs, LPFG-based in-fiber Mach-Zehnder and Michelson interferometers, which are apodized with the cosine-class windows of cosine, raised-cosine, Hamming, and Blackman. The analytic models (AMs) of the apodized LPFG devices are derived from the FMC theory, which are compared with the preferred transfer matrix (TM) method to confirm their efficiencies and accuracies. The AM-based analyses are achieved and verified to be accurate and efficient enough. The AM-based analysis efficiency is improved over 1318 times versus the TM-based one. Based on the analytic models, an analytic design algorithm is proposed and then applied to designing these LPFG devices, which has the complexity of O(N) and is far faster than the existing design methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.