Abstract

CANDECOMP/PARAFAC (CP) has found numerous applications in wide variety of areas such as in chemometrics, telecommunication, data mining, neuroscience, separated representations. For an order- <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$N$</tex></formula> tensor, most CP algorithms can be computationally demanding due to computation of gradients which are related to products between tensor unfoldings and Khatri-Rao products of all factor matrices except one. These products have the largest workload in most CP algorithms. In this paper, we propose a fast method to deal with this issue. The method also reduces the extra memory requirements of CP algorithms. As a result, we can accelerate the standard alternating CP algorithms 20–30 times for order-5 and order-6 tensors, and even higher ratios can be obtained for higher order tensors (e.g., <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$N\geq 10$</tex></formula> ). The proposed method is more efficient than the state-of-the-art ALS algorithm which operates two modes at a time (ALSo2) in the Eigenvector PLS toolbox, especially for tensors with order <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$N\geq 5$</tex></formula> and high rank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.