Abstract

Methods for reducing the computation requirements of joint segmentation and recognition of phones using the stochastic segment model are presented. The approach uses a fast segment classification method that reduces computation by a factor of two to four, depending on the confidence of choosing the most probable model. A split-and-merge segmentation algorithm is proposed as an alternative to the typical dynamic programming solution of the segmentation and recognition problem, with computation savings increasing proportionally with model complexity. Although the current recognizer uses context-independent phone models, the results reported for the TIMIT database for speaker-independent joint segmentation and recognition are comparable to those of systems that use context information. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.