Abstract

The context-free language (CFL) reachability problem is a well-known fundamental formulation in program analysis. In practice, many program analyses, especially pointer analyses, adopt a restricted version of CFL-reachability, Dyck-CFL-reachability, and compute on edge-labeled bidirected graphs. Solving the all-pairs Dyck-CFL-reachability on such bidirected graphs is expensive. For a bidirected graph with n nodes and m edges, the traditional dynamic programming style algorithm exhibits a subcubic time complexity for the Dyck language with k kinds of parentheses. When the underlying graphs are restricted to bidirected trees, an algorithm with O(n log n log k) time complexity was proposed recently. This paper studies the Dyck-CFL-reachability problems on bidirected trees and graphs. In particular, it presents two fast algorithms with O(n) and O(n + m log m) time complexities on trees and graphs respectively. We have implemented and evaluated our algorithms on a state-of-the-art alias analysis for Java. Results on standard benchmarks show that our algorithms achieve orders of magnitude speedup and consume less memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.