Abstract
In this work, we propose the Fast Polarized Wave Propagation Method (FPWPM), which is an efficient method for vector wave optical simulations of microoptics. The FPWPM is capable of handling comparably large simulation volumes while maintaining quick runtime. This allows for real-world application of this method for the rapid development process of 3D-printed microoptics. By comparison to established routines like the rigorous coupled wave analysis (RCWA) or the Richards-Wolf-Integral, accuracy and superior runtime efficiency of the FPWPM are demonstrated by simulation of interfaces, gratings, and lenses. By considering polarization in simulations, the FPWPM facilitates the analysis of optical elements which employ this property of electromagnetic waves as a feature in their optical design, e.g., diffractive elements, gratings, or optics with high angle of incidence like high numerical aperture lenses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.