Abstract
Target localisation using frequency diverse array (FDA) has drawn much attention owing to the additional degree of freedom in the range dimension. However, the Doppler effect was often ignored in previous FDA works because of the stationary target assumption, and in contrast, even stationary target localisation could be of quite a high computational complexity. In this study, a method is proposed that can jointly estimate range, angle, and Doppler for FDA multiple-input-multiple-output radar with low computational complexity. First, Doppler is estimated independently by utilising unstructured maximum likelihood method. Next, traditional two-dimensional (2D) MUSIC is divided into multiple one-dimensional (1D) MUSIC to estimate the angle. Then substituting the estimated angle into the former 2D MUSIC results in a 1D searching over range dimension to get the range estimation. The advantage of the proposed method was verified by simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.