Abstract

Second-generation (2G) high-temperature superconducting (HTS) tapes are now capable of carrying very high transport current and promising for a wide range of applications. The critical current of HTS coils is important for applications, such as superconducting electric machines, superconducting magnetic energy storage, and superconducting magnets. Therefore, precisely and quickly calculating critical current of HTS coils is very important for designing HTS devices. This paper provides a fast algorithm for evaluating critical current of HTS pancake coil. The fast algorithm is realized through a stationary model, which is based on finite element method (FEM) software. The stationary model means that the model is solved by stationary study instead of time-dependent study. To validate this method, a pancake HTS coil was wound and its critical current was measured. Meanwhile, an axial symmetric stationary model was built according to the geometry of the measured HTS coil. By comparing measured and calculated results, the effectiveness of the stationary model was demonstrated. Moreover, the stationary model is compared with H formulation model. The calculated results by the two models are nearly the same. However, by using stationary calculation, the stationary model can remarkably speed up the computational process. Due to the advantage of calculating speed, the stationary model can be used to characterize and design large-scale HTS applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call