Abstract

Neural network quantization procedure is the necessary step for porting of neural networks to mobile devices. Quantization allows accelerating the inference, reducing memory consumption and model size. It can be performed without fine-tuning using calibration procedure (calculation of parameters necessary for quantization), or it is possible to train the network with quantization from scratch. Training with quantization from scratch on the labeled data is rather long and resource-consuming procedure. Quantization of network without fine-tuning leads to accuracy drop because of outliers which appear during the calibration. In this article we suggest to simplify the quantization procedure significantly by introducing the trained scale factors for quantization thresholds. It allows speeding up the process of quantization with fine-tuning up to 8 epochs as well as reducing the requirements to the set of train images. By our knowledge, the proposed method allowed us to get the first public available quantized version of MNAS without significant accuracy reduction - 74.8% vs 75.3% for original full-precision network. Model and code are ready for use and available at: this https URL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.