Abstract

Functional magnetic resonance imaging is a noninvasive tool for studying cerebral function. Many factors challenge activation detection, especially in low-signal scenarios that arise in the performance of high-level cognitive tasks. We provide a fully automated fast adaptive smoothing and thresholding (FAST) algorithm that uses smoothing and extreme value theory on correlated statistical parametric maps for thresholding. Performance on experiments spanning a range of low-signal settings is very encouraging. The methodology also performs well in a study to identify the cerebral regions that perceive only-auditory-reliable or only-visual-reliable speech stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.