Abstract

This article proposes a numerically simple method for locally adaptive smoothing. The heterogeneous regression function is modeled as a penalized spline with a varying smoothing parameter modeled as another penalized spline. This is formulated as a hierarchical mixed model, with spline coefficients following zero mean normal distribution with a smooth variance structure. The major contribution of this article is to use the Laplace approximation of the marginal likelihood for estimation. This method is numerically simple and fast. The idea is extended to spatial and non-normal response smoothing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.