Abstract

This paper proposes a novel method for the computation of hierarchical Poisson disk samplings on polygonal surfaces. The algorithm generates a pointerless hierarchical structure such that each level is a uniform Poisson disk sampling and a subset of the next level. As the main result, given a dynamically-varying importance sampling function defined over a surface, the hierarchy is capable of generating adaptive samplings with blue noise characteristics, temporal-coherence and real-time computation. Classical algorithms produce hierarchies in tight ratios, which is a serious bottleneck specially for a large number of samples. Instead, our method uses sparse ratios and decreases the adaptation error of the hierarchy through a fast optimization process. Therefore, we save a considerable amount of time (up to 74% in our experiments) while preserving the good blue noise properties. We present applications on Non-Photo Realistic rendering (NPR), more specifically, on surface stippling effects. First, we apply our method by taking illumination to be the importance sampling to shade the surface, and second, we dynamically deform a surface with a predefined stippled texture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.