Abstract

In humans and animals, surprise is a physiological reaction to an unexpected event, but how surprise can be linked to plausible models of neuronal activity is an open problem. We propose a self-supervised spiking neural network model where a surprise signal is extracted from an increase in neural activity after an imbalance of excitation and inhibition. The surprise signal modulates synaptic plasticity via a three-factor learning rule which increases plasticity at moments of surprise. The surprise signal remains small when transitions between sensory events follow a previously learned rule but increases immediately after rule switching. In a spiking network with several modules, previously learned rules are protected against overwriting, as long as the number of modules is larger than the total number of rules-making a step towards solving the stability-plasticity dilemma in neuroscience. Our model relates the subjective notion of surprise to specific predictions on the circuit level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.