Abstract

Fast magic-angle spinning (MAS), frequency selective (FS) heteronuclear multiple quantum coherence (HMQC) experiments which function in an analogous manner to solution SOFAST HMQC NMR experiments, are demonstrated. Fast MAS enables efficient FS excitation of 1 H solid-state NMR signals. Selective excitation and observation preserves 1 H magnetization, leading to a significant shortening of the optimal inter-scan delay. Dipolar and scalar 1 H{14 N} FS HMQC solid-state NMR experiments routinely provide 4- to 9-fold reductions in experiment times as compared to conventional 1 H{14 N} HMQC solid-state NMR experiments. 1 H{14 N} FS resonance-echo saturation-pulse double-resonance (RESPDOR) allowed dipolar dephasing curves to be obtained in minutes, enabling the rapid determination of NH dipolar coupling constants and internuclear distances. 1 H{14 N} FS RESPDOR was used to assign multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also provided enhanced sensitivity for 1 H{17 O} and 1 H{35 Cl} HMQC experiments on 17 O-labeled Fmoc-alanine and histidine hydrochloride monohydrate, respectively. FS HMQC and FS RESPDOR experiments will provide access to valuable structural constraints from materials that are challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.