Abstract

Frequency hopping is used in different communications systems for its robustness by providing frequency diversity against jamming and interfering signals. Successful detection and demodulation of a frequency hopping signal is dependent on proper tuning to transmit frequency and time synchronization of the burst. The sequence of hop frequencies is generally determined by a Pseudo-Noise (PN) sequence and time synchronization is achieved using synchronization preambles in the transmit burst. Successful acquisition of the hop frequency sequence could be achieved when at least a single burst's data is successfully decoded at the receiver. In this paper we present a low complexity, two-level acquisition based scheme for fast acquisition of the frequency hopping and time synchronization of the burst based on the Zadoff-Chu synchronization preambles. We have presented the simulation results detailing the proposed scheme's performance and proposed a low complexity hardware implementation architecture. Simulations show that the single IF channel synchronization detection performance is above 99% for SNRs more than −20dB and wideband multiple digital IF detection performance is similar to single digital IF channel performance for SNRs more than −5dB. The simulations have been carried out for characterizing the performance in different propagation channel environments such as AWGN, LTE-EVA, LTE-ETU and 6-path Rician propagation channels. The performance degradation due to the low complexity hardware is seen to be less than 1% for SNRs above −20dB and the synchronization performance difference reduces to less than 0.1% for SNRs above −5dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.