Abstract

By moulding optical fields, holographic optical tweezers are able to generate structured force fields with magni- tudes and length scales of great utility for experiments in soft matter and biological physics. Optically induced force fields are determined not only by the incident optical field, but by the shape and composition of the par- ticles involved. Indeed, there are desirable but simple attributes of a force field, such as rotational control, that cannot be introduced by sculpting optical fields alone. In this work we describe techniques for the fabrication, sample preparation, optical manipulation and position and orientation measurement of non-spherical particles. We demonstrate two potential applications: we show how the motion of a non-spherical optically trapped force probe can be used to infer interactions occurring at its tip, and we also demonstrate a structure designed to be controllably rotated about an axis perpendicular to the optical axis of the beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.