Abstract

Lead tungstate occurs in nature as tetragonal stolzite of scheelite (CaWO4) type and monoclinic raspite. In this work, we report, the typical growth of snowflake-like tetragonal stolzite and bamboo-leaf-like monoclinic raspite nanocrystals of PbWO4 via a simple aqueous precipitation method and a polyol (polyethylene glycol-200) mediated precipitation method at room temperature (27 °C). The synthesised PbWO4 nanocrystals were characterised by XRD, SEM, EDAX and TGA–DTA. The UV-Vis absorption and photoluminescence studies of PbWO4 nanocrystals in the two morphologies were performed. The nuclei of PbWO4 nanocrystals in aqueous medium self-assemble in a tetragonal manner to form the snowflake-like crystals. In polyol medium, PbWO4 nuclei preferentially grow by oriented attachment process to form the bamboo-leaf-like morphology. The specific morphology of the regularly assembled PbWO4 nanocrystals in the two phases finds applications in nanoelectronics and photonics. Compared to other well-known scintillators, PbWO4 is most attractive for high-energy physics applications, because of its high density, short decay time and high irradiation damage resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.