Abstract

Abstract Modern automation systems have to cope with large amounts of sensor data to be processed, stricter security requirements, heterogeneous hardware, and an increasing need for flexibility. The challenges for tomorrow’s automation systems need software architectures of today’s real-time controllers to evolve. This article presents FASA , a modern software architecture for next-generation automation systems. FASA provides concepts for scalable, flexible, and platform-independent real-time execution frameworks, which also provide advanced features such as software-based fault tolerance and high degrees of isolation and security. We show that FASA caters for robust execution of time-critical applications even in parallel execution environments such as multi-core processors. We present a reference implementation of FASA that controls a magnetic levitation device. This device is sensitive to any disturbance in its real-time control and thus, provides a suitable validation scenario. Our results show that FASA can sustain its advanced features even in high-speed control scenarios at 1 kHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.