Abstract
Heat shock transcription factor-1 (HSF-1) is the primary stress responsive transcription factor that regulates expression of heat shock proteins (Hsps) in response to elevated temperature. We show that the transcriptional activity of HSF-1 can also directly mediate hyperthermia-induced Fas ligand (FasL) expression in activated T cells. We identify a conserved region within the human FasL promoter spanning from -276 to -236 upstream of the translational start site that contains two 15 bp non-identical adjacent HSF-1-binding sites or heat shock elements (HSEs) separated by 11 bp. Both the distal HSE (HSE1) (extending from -276 to -262) and the proximal HSE (HSE2) (spanning from -250 to -236) consist of two perfect and one imperfect nGAAn pentamers. We show the direct binding of HSF-1 to these elements and that mutation of these sites abrogates the ability of HSF-1 to bind and drive promoter activity. HSF-1 associates with these elements in a cooperative manner to mediate optimal promoter activity. We propose that the ability of HSF-1 to mediate stress-inducible expression of FasL extends its classical function as a regulator of Hsps to encompass a function for this transcription factor in the regulation of immune function and homeostasis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.