Abstract
Astrocytomas are among the most common brain tumors that are usually fatal in their malignant form. They appear to progress without significant impedance from the immune system, despite the presence of intratumoral T cell infiltration. To date, this has been thought to be the result of T cell immunosuppression induced by astrocytoma-derived cytokines. Here, we propose that cell contact-mediated events also play a role, since we demonstrate the in vivo expression of Fas ligand (FasL/CD95L) by human astrocytoma and the efficient killing of Fas-bearing cells by astrocytoma lines in vitro and by tumor cells ex vivo. Functional FasL is expressed by human, mouse, and rat astrocytoma and hence may be a general feature of this nonlymphoid tumor. In the brain, astrocytoma cells can potentially deliver a death signal to Fas+ cells which include infiltrating leukocytes and, paradoxically, astrocytoma cells themselves. The expression of FasL by astrocytoma cells may extend the processes that are postulated to occur in normal brain to maintain immune privilege, since we also show FasL expression by neurons. Overall, our findings suggest that FasL-induced apoptosis by astrocytoma cells may play a significant role in both immunosuppression and the regulation of tumor growth within the central nervous system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.